Elucidating the significance of molecular interaction between sulphur doped zinc oxide nanoparticles and serum albumin using multispectroscopic approach

Author:

Mahanthappa Mallappa1,Savanur Mohammed Azharuddin23ORCID,Ramu Jagadish45,Tatagar Asma6

Affiliation:

1. Department of Chemistry, School of Applied Sciences REVA University Bangalore India

2. Department of Immunology MIGAL‐Galilee Research Institute Kiryat Shmona Israel

3. Department of Biochemistry Indian Institute of Science Bangalore India

4. Department of Chemistry Maharani's Science College for Women Mysore India

5. Department of Chemistry Government First Grade College Chikkaballapur India

6. Department of Chemistry SDM College of Engineering and Technology Dharwad India

Abstract

AbstractIngenious nanomaterials with improved biocompatibility and multifunctional properties are gaining vital significance in biomedical applications, including advanced drug delivery and nanotheranostics. In a biological system, these nanoparticles interact with serum proteins forming a dynamic corona that affects their biological or toxicological properties producing undesirable effects. Thus, the current study focuses on the synthesis of sulphur‐doped zinc oxide nanoparticles (ZnO/S NPs) and characterizing their mechanism of interaction with serum proteins using multispectroscopic approach. ZnO/S NPs were synthesized by employing a co‐precipitation approach and characterized using various analytical techniques. The results of interaction studies demonstrated that ZnO/S NPs interact with serum albumins via the static quenching process. Analysis of thermodynamic parameters (ΔG, ΔH and ΔS) revealed that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays a major role. The interaction of ZnO/S NPs with tyrosine residue in bovine serum albumin was established by synchronous fluorescence spectroscopy. In addition, the results of UV–visible, circular dichroism, Fourier transform infrared, Forster's resonance energy transfer theory and dynamic light scattering spectroscopic studies revealed that the ZnO/S NPs interact with albumin by inducing the conformational changes in secondary structure and reducing the α‐helix content.

Publisher

Wiley

Subject

Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3