Retracted: In Situ Observation of Phase Transformations of Pearlite Heat‐Resistant Steel during Solidification

Author:

Li Yaqiang12ORCID,Wang Ziming12,Li Yingying1,Han Baochen3ORCID,Sheng Pengcheng12,Liu Yanting12

Affiliation:

1. Department of Automotive Engineering Hebei Vocational University of Technology and Engineering Xingtai 054000 China

2. Hebei Special Vehicle Modification Technology Innovation Center Hebei Vocational University of Technology and Engineering Xingtai 054000 China

3. School of Material Science and Engineering Hebei University of Science and Technology Shijiazhuang 050018 China

Abstract

The phase transformation of pearlite heat‐resistant steel during solidification is observed using high‐temperature confocal scanning laser microscopy. The precipitation of the δ‐ferrite (δ) phase proceeds in a cellular manner at cooling rates of 5 and 15 °C min−1, whereas precipitation occurs in a dendritic manner at a cooling rate of 100 °C min−1. Furthermore, a change in the solidification path is observed at high cooling rates. When the experimental steel is cooled at a low cooling rate of 5 °C min−1, the sequence of continuous solidification is L → L + δ → L + δ + γ → δ + γ, which is consistent with that of equilibrium. However, when the cooling rate increases to 15 and 100 °C min−1, the sequence of continuous solidification is L → L + δ → L + δ + γ → L + γ→γ. Furthermore, at various cooling rates, the interface of the peritectic transformation of δ → γ presents three different modes: planar and cellular modes controlled by solute diffusion and massive transformation controlled by the processes that occur at the transformation interfaces. The different δ → γ transformation modes and the associated different degrees of volume shrinkage are hypothesized to lead to uneven strand shell growth during continuous casting.

Funder

National Nature Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3