Softening Behavior of a Cold Work Tool Steel and High‐Boron Tool Steel Fabricated by Directed Energy Deposition

Author:

Yuan Miwen12ORCID,Nyborg Lars1,Oikonomou Christos3,Karamchedu Seshendra3,Fan Yicheng4,Liu Libin2,Cao Yu1ORCID

Affiliation:

1. Department of Industrial and Materials Science Chalmers University of Technology 41296 Gothenburg Sweden

2. School of Materials Science and Engineering Central South University Changsha 410083 P. R. China

3. Research and Development Department Uddeholms AB Hagfors 638 85 Sweden

4. Laser Cladding Department ASSAB Tooling Technology (ShangHai) Co., Ltd. Shanghai 201108 P. R. China

Abstract

Prolonging the life of hot stamping dies in the automotive industry is challenging. Surface modification is an effective way to improve the durability of the dies. In this study, two tool steel grades, one cold work tool steel (V4E) and one high‐boron tool steel (HBS), are deposited on a tool steel substrate using directed energy deposition, followed by tempering. Softening behavior at high temperatures of 550 and 600 °C is investigated. In the key findings, it is revealed that both steels exhibit remarkable hardness, surpassing the substrate even after extended exposure to high temperatures. HBS shows excellent softening resistance in terms of hardness at 550 °C but experiences a significant drop at 600 °C. V4E demonstrates an overall superior softening resistance due to its thermal stable MC (M represents metal) carbides and the relatively stable dislocation density. Microstructural analysis highlights some unique features, such as borides in HBS and dendritic structures in V4E. In this study, the correlation between microstructure characteristics and hardness evolution is revealed, providing some insights into how these materials resist softening to enhance the longevity and performance of hot stamping dies.

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3