Impact of Radial Position on Iron Ore Sinter Reduction and Microstructure at 700–1100 °C

Author:

Abdelrahim Ahmed1ORCID,Iljana Mikko1,Aula Matti1,Fabritius Timo1

Affiliation:

1. Process Metallurgy Research Unit University of Oulu Pentti Kaiteran katu 1 90014 Oulu Finland

Abstract

In this research, the reduction of iron ore sinter in a blast furnace (BF) simulator in CO–CO2–N2‐reducing gas, simulating conditions at the BF center and wall, is investigated. Measurements from an operating BF guide the study, ensuring realistic reduction parameters. Reduction rate and extent, along with physical properties, are assessed under a temperature range of 700–1100 °C. In isothermal reduction experiments, the BF center exhibits superior conditions, particularly at 900 °C, achieving an 83.78% reduction degree compared to 27.17% at the wall for the same temperature. In this study, it is highlighted that basic iron ore sinter demonstrates higher reduction efficiency compared to acid iron ore pellets under identical BF center reducing conditions. Specific surface area and porosity measurements unveil a contrasting trend in specific surface area and porosity evolution between the BF wall and center. Surface morphology analysis reveals that the reduction in specific surface area and porosity of sinter samples at the BF center conditions at 1000–1100 °C is attributed to the sintering of the formed metallic iron. Carbon analysis confirms no carbon deposition took place during reduction. Mineralogical and physical property analyses provide detailed insights into the evolving phase composition during sinter reduction.

Funder

Research Fund for Coal and Steel

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3