Differences between Tensile Properties of WAAM SS304 Components in Different Directions

Author:

Yu Huiyin1,Zhu Xiaolei1,Wang Jian1ORCID,Lu Xiaofeng1

Affiliation:

1. School of Mechanical and Power Engineering Nanjing Tech University 211816 Nanjing China

Abstract

Wire arc additive manufacturing (WAAM) is particularly suitable for manufacturing large metal structure components. However, the anisotropy of mechanical properties of WAAM components cannot be avoided, which makes the mechanical properties of WAAM components unstable and seriously limits its engineering application. Herein, the tensile samples for 304 stainless‐steel thin‐walled structures along three directions (longitudinal, diagonal, and transverse) of the deposition layer are intercepted. The mechanical properties of the components are 9.3–54.6% higher than the standard values. The samples have obvious anisotropy characteristics. Samples with diagonal direction show the best mechanical properties, which are not affected by process parameters. The better the forming quality, the higher the mechanical properties of the samples. By correlating the mechanical properties results of the samples with the microstructures, it is found that very fine dendrites grow along the deposition direction in the samples, and this unique microstructure leads to the anisotropy of the mechanical properties. Under the action of uniaxial tensile load, the growth direction of precise dendrite in the sample with diagonal direction is almost the same as the slip direction of the maximum dislocation plane, which is the reason for the excellent mechanical properties of the sample with diagonal direction.

Funder

Natural Science Foundation of Jiangsu Province

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3