Influence of Carbon Material Properties on Slag‐Foaming Dynamics in Electric Arc Furnaces: A Review

Author:

Kieush Lina1ORCID,Schenk Johannes2ORCID

Affiliation:

1. K1‐MET GmbH 8700 Leoben Austria

2. Chair of Ferrous Metallurgy Montanuniversitaet Leoben 8700 Leoben Austria

Abstract

In this article, the impact of conventional carbon sources, alongside potential carbon bio‐sources, on slag‐foaming behavior is investigated. It highlights the complex relationship between these carbon sources and their properties, such as fixed carbon (FC), volatile matters (VMs), mineral composition in ash, reactivity, and wetting, which ultimately influence the slag foaming efficiency. The challenges associated with biochar and the significant differences in foaming behavior are addressed. For biochar to achieve effective slag foaming, it is essential that it contains an FC of at least 60 wt% and ash of less than 5 wt%. Though less impactful than CO generation from iron (II) oxide reduction, VMs from carbon sources, especially with high‐VM biochar, show secondary effects on reaction courses. The disadvantages associated with the high reactivity of biochar can be overcome by improving its physicomechanical and physicochemical properties. Despite the potential of biochar–coke mixtures to benefit slag foaming without enhancing biochar properties directly, challenges such as biochar floatation on the liquid slag surface and rapid burn‐off exist. Biocoke offers foaming results comparable to those of conventional sources. Despite the benefits of biocoke over other carbon sources, the review underscores its relatively unexplored status in the context of slag‐foaming applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3