Minerogenic salt marshes can function as important inorganic carbon stores

Author:

Mueller Peter12ORCID,Kutzbach Lars3,Mozdzer Thomas J.4ORCID,Jespersen Emil5,Barber Donald C.6,Eller Franziska5

Affiliation:

1. Institute of Landscape Ecology, University of Münster Münster Germany

2. Institute of Plant Science and Microbiology, Universität Hamburg Hamburg Germany

3. Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), Universität Hamburg Hamburg Germany

4. Department of Biology, Bryn Mawr College Bryn Mawr Pennsylvania USA

5. Department of Biology, Aarhus University Aarhus C Denmark

6. Department of Geology, Bryn Mawr College Bryn Mawr Pennsylvania USA

Abstract

AbstractStocks and fluxes of soil inorganic carbon have long been ignored in the context of coastal carbon sequestration, and their implications for the climate cooling effect of blue carbon ecosystems are complex. Here, we investigate the role of soil inorganic carbon in five salt marshes along the northern coast of the European Wadden Sea, one of the world's largest intertidal areas, harboring ~ 20% of European salt‐marsh area. We demonstrate a substantial contribution of inorganic carbon (average: 29%; range: 7–57%) to the total soil carbon stock of the top 1 m. Notably, inorganic exceeded organic carbon stocks in one of the studied sites; a finding that we ascribe to site geomorphic features, such as proximity to marine calcium carbonate sources and hydrodynamic exposure. Contrary to our hypothesis that inorganic carbon stocks would decline along the successional gradient from tidal flat to high marsh, as carbonate deposits would progressively dissolve in increasingly organic‐rich rooted sediments, our findings demonstrate the opposite pattern—an increase in inorganic carbon stocks along the successional gradient. This suggests that the dissolution of calcium carbonates in the root zone is counterbalanced by other processes, such as trapping of sedimentary carbonates by marsh vegetation and calcium carbonate precipitation in anaerobic subsoils. In the context of blue carbon, it will be critical to develop an improved understanding of these plant‐ and microbiota‐mediated processes in calcium carbonate cycling.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3