Filter‐Menger set of reals in Cohen extensions

Author:

Zhang Hang1ORCID,Zhang Shuguo2

Affiliation:

1. School of Mathematics Southwest Jiaotong University Chengdu China

2. College of Mathematics Sichuan University Chengdu China

Abstract

AbstractWe prove that for every ultrafilter on there exists a filter on which is ‐Menger and . We show that in the Cohen model there exists such which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character that is not Hurewicz in the ‐Cohen model where is uncountable regular. This shows that the positive answer to a question of Hernández‐Gutiérrez and Szeptycki [3, Question 2.8] is consistent with . We also study the filter generated by the set of mutually Cohen reals in the ‐Cohen model. We prove that and and every ‐dominating family in the ground model is ‐unbounded in extension. Two questions are posed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference14 articles.

1. Some observations on Hurewicz and I-Hurewicz property

2. Some observations on filters with properties defined by open covers;Hernández‐Gutiérrez R.;Comment. Math. Univ. Carolin.,2015

3. Über Folgen stetiger Funktionen

4. The combinatorics of open covers II

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3