Acute Neurobehavioral and Glial Responses to Explosion Gas Inhalation in Rats

Author:

Liu Jinren1ORCID,Gao Junhong2,Wang Hong2,Fan Xiaolin2,Li Liang2,Wang Xiangni1,Wang Xiying1,Lu Jiajia1,Shi Xingmin1,Yang Pinglin3

Affiliation:

1. Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center Xi'an Jiaotong University Xi'an China

2. Xi'an Key Laboratory of Toxicology and Biological Effects Institute for Hygiene of Ordnance Industry Xi'an China

3. The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China

Abstract

ABSTRACTMilitary personnel, firefighters, and fire survivors exhibit a higher prevalence of mental health conditions such as depression and post‐traumatic stress disorder (PTSD) compared to the general population. While numerous studies have examined the neurological impacts of physical trauma and psychological stress, research on acute neurobehavioral effects of gas inhalation from explosions or fires is limited. This study investigates the early‐stage neurobehavioral and neuronal consequences of acute explosion gas inhalation in Sprague–Dawley rats. Rats were exposed to simulated explosive gas and subsequently assessed using behavioral tests and neurobiological analyses. The high‐dose exposure group demonstrated significant depression‐like behaviors, including reduced mobility and exploration. However, neuronal damage was not evident in histological analyses. Immunofluorescence revealed increased density of radial glia and oligodendrocytes in specific brain regions, suggesting hypoxia and axon damage induced by gas inhalation as a potential mechanism for the observed neurobehavioral changes. These findings underscore the acute impact of explosion gas inhalation on mental health, highlighting the habenula and dentate gyrus of hippocampus as the possible target regions. The findings are expected to support early diagnosis and treatment strategies for brain injuries caused by explosion gas, offering insights into early intervention for depression and PTSD in affected populations.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3