Affiliation:
1. Institute for Ecology and Environmental Resources, Research Center for Ecological Security and Green Development Chongqing Academy of Social Sciences Chongqing China
2. Chongqing Academy of Ecology and Environmental Sciences Chongqing China
3. Chongqing Industry Polytechnic College Chongqing China
4. School of Tourism Kaili University Kaili China
5. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education) China West Normal University Nanchong China
Abstract
AbstractClimate and land use changes are increasingly recognized as major threats to global biodiversity, with significant impacts on wildlife populations and ecosystems worldwide. The study of how climate and land use changes impact wildlife is of paramount importance for advancing our understanding of ecological processes in the face of global environmental change, informing conservation planning and management, and identifying the mechanisms and thresholds that underlie species' responses to shifting climatic conditions. The Asiatic black bear (Ursus thibetanus) is a prominent umbrella species in a biodiversity hotspot in Southwestern China, and its conservation is vital for safeguarding sympatric species. However, the extent to which this species' habitat may respond to global climate and land use changes is poorly understood, underscoring the need for further investigation. Our goal was to anticipate the potential impacts of upcoming climate and land use changes on the distribution and dispersal patterns of the Asiatic black bear in the Sichuan‐Chongqing Region. We used MaxEnt modeling to evaluate habitat vulnerability using three General Circulation Models (GCMs) and three scenarios of climate and land use changes. Subsequently, we used Circuit Theory to identify prospective dispersal paths. Our results revealed that the current area of suitable habitat for the Asiatic black bear was 225,609.59 km2 (comprising 39.69% of the total study area), but was expected to decrease by −53.1%, −49.48%, and −28.55% under RCP2.6, RCP4.5, and RCP8.5 projection scenarios, respectively. Across all three GCMs, the distribution areas and dispersal paths of the Asiatic black bear were projected to shift to higher altitudes and constrict by the 2070s. Furthermore, the results indicated that the density of dispersal paths would decrease, while the resistance to dispersal would increase across the study area. In order to protect the Asiatic black bear, it is essential to prioritize the protection of climate refugia and dispersal paths. Our findings provide a sound scientific foundation for the allocation of such protected areas in the Sichuan‐Chongqing Region that are both effective and adaptive in the face of ongoing global climate and land use changes.
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献