Humidity stress and its consequences for male pre‐ and post‐copulatory fitness traits in an insect

Author:

Simmons Leigh W.1ORCID,Lovegrove Maxine1,Du Xin (Bob)2,Ren Yonglin2,Thomas Melissa L.23

Affiliation:

1. Centre for Evolutionary Biology, School of Biological Sciences The University of Western Australia Perth Western Australia Australia

2. Harry Butler Institute Murdoch University Perth Western Australia Australia

3. CSIRO Health and Biosecurity CSIRO Land and Water Floreat Western Australia Australia

Abstract

AbstractGlobal declines in insect abundance are of significant concern. While there is evidence that climate change is contributing to insect declines, we know little of the direct mechanisms responsible for these declines. Male fertility is compromised by increasing temperatures, and the thermal limit to fertility has been implicated as an important factor in the response of insects to climate change. However, climate change is affecting both temperature and hydric conditions, and the effects of water availability on male fertility have rarely been considered. Here we exposed male crickets Teleogryllus oceanicus to either low or high‐humidity environments while holding temperature constant. We measured water loss and the expression of both pre‐ and postmating reproductive traits. Males exposed to a low‐humidity environment lost more water than males exposed to a high‐humidity environment. A male's cuticular hydrocarbon profile (CHC) did not affect the amount of water lost, and males did not adjust the composition of their CHC profiles in response to hydric conditions. Males exposed to a low‐humidity environment were less likely to produce courtship song or produced songs of low quality. Their spermatophores failed to evacuate and their ejaculates contained sperm of reduced viability. The detrimental effects of low‐humidity on male reproductive traits will compromise male fertility and population persistence. We argue that limits to insect fertility based on temperature alone are likely to underestimate the true effects of climate change on insect persistence and that the explicit incorporation of water regulation into our modeling will yield more accurate predictions of the effects of climate change on insect declines.

Funder

Australian Research Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3