Investigation of autosegmentation techniques on T2‐weighted MRI for off‐line dose reconstruction in MR‐linac workflow for head and neck cancers

Author:

McDonald Brigid A.1,Cardenas Carlos E.2,O'Connell Nicolette3,Ahmed Sara1,Naser Mohamed A.1,Wahid Kareem A.1,Xu Jiaofeng3,Thill Dan3,Zuhour Raed J.4,Mesko Shane1,Augustyn Alexander1,Buszek Samantha M.1,Grant Stephen1,Chapman Bhavana V.1,Bagley Alexander F.1,He Renjie1,Mohamed Abdallah S. R.1,Christodouleas John3,Brock Kristy K.56,Fuller Clifton D.1

Affiliation:

1. Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston Texas USA

2. Department of Radiation Oncology The University of Alabama at Birmingham Birmingham Alabama USA

3. Elekta AB Stockholm Sweden

4. Department of Radiation Oncology The University of Texas Medical Branch Galveston Texas USA

5. Department of Imaging Physics The University of Texas MD Anderson Cancer Center Houston Texas USA

6. Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA

Abstract

AbstractBackgroundIn order to accurately accumulate delivered dose for head and neck cancer patients treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)‐linear accelerator (MR‐linac), the low‐resolution T2‐weighted MRIs used for daily setup must be segmented to enable reconstruction of the delivered dose at each fraction.PurposeIn this pilot study, we evaluate various autosegmentation methods for head and neck organs at risk (OARs) on on‐board setup MRIs from the MR‐linac for off‐line reconstruction of delivered dose.MethodsSeven OARs (parotid glands, submandibular glands, mandible, spinal cord, and brainstem) were contoured on 43 images by seven observers each. Ground truth contours were generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. Twenty total autosegmentation methods were evaluated in ADMIRE: 1–9) atlas‐based autosegmentation using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), random forest (RF) for label fusion; 10–19) autosegmentation using images from a patient's 1–4 prior fractions (individualized patient prior [IPP]) using STAPLE/PF/RF; 20) deep learning (DL) (3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). Execution time was measured for each method. Autosegmented structures were compared to ground truth structures using the Dice similarity coefficient, mean surface distance (MSD), Hausdorff distance (HD), and Jaccard index (JI). For each metric and OAR, performance was compared to the inter‐observer variability using Dunn's test with control. Methods were compared pairwise using the Steel‐Dwass test for each metric pooled across all OARs. Further dosimetric analysis was performed on three high‐performing autosegmentation methods (DL, IPP with RF and 4 fractions [IPP_RF_4], IPP with 1 fraction [IPP_1]), and one low‐performing (PAL with STAPLE and 5 atlases [PAL_ST_5]). For five patients, delivered doses from clinical plans were recalculated on setup images with ground truth and autosegmented structure sets. Differences in maximum and mean dose to each structure between the ground truth and autosegmented structures were calculated and correlated with geometric metrics.ResultsDL and IPP methods performed best overall, all significantly outperforming inter‐observer variability and with no significant difference between methods in pairwise comparison. PAL methods performed worst overall; most were not significantly different from the inter‐observer variability or from each other. DL was the fastest method (33 s per case) and PAL methods the slowest (3.7–13.8 min per case). Execution time increased with a number of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of dose differences were within ± 250 cGy from ground truth, but outlier differences up to 785 cGy occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 between 0.030 and 0.314).ConclusionsThe autosegmentation methods offering the best combination of performance and execution time are DL and IPP_1. Dose reconstruction on on‐board T2‐weighted MRIs is feasible with autosegmented structures with minimal dosimetric variation from ground truth, but contours should be visually inspected prior to dose reconstruction in an end‐to‐end dose accumulation workflow.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3