Bond dissociation energies of the fifth‐row elements (InI): A quantum theoretical benchmark study

Author:

Badran Ismail1ORCID,Hashlamoun Kotaybah2,Nassar Nashaat N.2ORCID

Affiliation:

1. Department of Chemistry, Faculty of Sciences An‐Najah National University Nablus Palestine

2. Department of Chemical and Petroleum Engineering University of Calgary Calgary Alberta Canada

Abstract

AbstractThe bond dissociation energies (BDE) of most main‐group elements have been accurately measured. However, the BDE values for heavy elements, particularly those from the fifth period (InI), are still missing or poorly validated. This study aims to identify the most accurate computational methods for calculating BDE values of compounds containing fifth‐row elements, including In, Sn, Sb, Te, and I, with a focus on readily accessible methods in software packages. The investigation involved a benchmark study using density functional theory (DFT), in addition to the 2nd order Møller–Plesset perturbation theory (MP2) and the coupled cluster with single, double, and perturbative triple excitations CCSD(T). The DFT functionals used in the study include APFD, B3LYP, B3LYP‐D3, B3P86, B97‐D3, BHandH, HSEH1PBE, M06‐2X, MN12‐SX, MN15‐L, and TPSSH. The functionals were carefully selected to cover some popular functionals as well as to cover all levels of the Jacob's ladder of DFT accuracy. The computed BDE values were compared with experimental values, and the results were filtered to remove any possible outliers. The statistical errors (MAPE, RMSE, and Pearson's) were then calculated and used to assess the performance of the methods.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3