Effect of sintering on processability vis‐a‐vis microcellular foaming of ultrahigh molecular weight polyethylene

Author:

Shandilya Prashant Mani1,Ghosh Anup K.1ORCID

Affiliation:

1. Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India

Abstract

AbstractProcessing of ultrahigh molecular weight polyethylene (UHMWPE) involves sintering due to its high melt strength and no flowability above melting temperature. Variations in compression molding pressure during sintering lead to chain rearrangement at the sintered interphase and the boundary, affecting foamability. UHMWPE particles are sintered using compression molding; samples are prepared at two different pressures: UHPE‐HP (80 bar) and UHPE‐LP (40 bar) at 180°C. The sintering phenomenon of UHMWPE particles is observed through an optical microscope, and their effect on foaming was observed. UHPE‐HP foams are systematically studied to obtain the foaming window. Increasing foaming pressure (80–120 bar) made UHPE‐HP foams softer (0.350–0.219 g/cm3) with varying average cell size (26.37–46.1 μm) and foam cell density (3.98 × 107–1.06 × 108 cells/cm3), and compression modulus decreased from 9 to 5.4 MPa. DMA results showed a strong dependence of stiffness on crystallinity, and foamed samples exhibit higher stiffness than their unfoamed counterpart. The storage modulus for foamed samples decreases with increase in the gas content. The UHPE‐LP foam is relatively softer, with a lower foam density (0.233 g/cm3), a higher expansion ratio, bigger average foam cells (35.13 μm), and lower foam cell density (9.33 × 107 cells/cm3). This is due to constrained crystallinity at the interphase and pre‐existing cavities, favoring the foaming.

Funder

Ministry of Education, India

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3