Preparation of novel Polyvinylidene fluoride/boehmite composite membrane made using nonsolvent induced phase separation method for arsenate ion removal from water

Author:

Kumar Anil1,Ghosh Uttam Kumar1ORCID

Affiliation:

1. Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India

Abstract

AbstractPolyvinylidene fluoride/boehmite composite membranes with hydrophilic surfaces were prepared using the nonsolvent induced phase inversion technique (NIPS) method to remove arsenate ions from water. The nanoparticles were added with different boehmite filler content. The contact angle of the bare membrane is 850, and it is reduced to 530, imparting hydrophilicity due to the presence of boehmite nanoparticles. The mechanical characteristics of the membranes have significantly improved. The BET and SEM results have shown that the average pore diameter gets reduced with boehmite addition, and surface area increases. Additionally, the use of nanoparticles enhanced the membranes' thermal stability. The nanofiltration unit is used to filter the arsenic‐contaminated water. The transmembrane pressure of ~4 bar is applied to all the membranes, and arsenic rejection; the flux of the membranes was calculated. The membrane has shown the highest rejection of 55% with a flux of 3.5659 L/m2.h.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3