Locking plate augmentation of polymethylmethacrylate‐filled distal femoral defects: A biomechanical study

Author:

Ferlauto Harrison R.1ORCID,Belanger Bruno1,Lazarides Alexander L.1,Visgauss Julia D.1,Brigman Brian E.1,Eward William C.1

Affiliation:

1. Department of Orthopaedic Surgery Duke University School of Medicine Durham North Carolina USA

Abstract

AbstractBenign, locally aggressive tumors of the distal femur are typically treated with intralesional curettage and polymethylmethacrylate (PMMA) cementation. However, it is not known whether plate fixation should be added to biomechanically augment these PMMA‐filled defects. The purpose of this study was to evaluate the performance of two competing techniques for reconstruction of a distal femoral defect. For this biomechanical study, we used 12 composite femurs with properties comparable to bone. In nine femurs, identical contained medial distal femoral defects were created using a robotic arm. Group A contained three intact femurs, Group B three femurs with an unfilled defect, Group C three femurs reconstructed with PMMA alone, and Group D three femurs reconstructed with PMMA plus a medial locking plate. Locations of greatest stress concentration were determined by PhotoStress analysis, then three strain gauges were applied to each specimen at these high‐stress locations. Specimens were loaded within a physiologic range followed by loading to failure. Outcome measures included construct stiffness, strain along the distal femur, and load at failure. Results showed that stiffness and strain were not significantly different between reconstructive techniques; however, both techniques reduced tensile strain along the popliteal surface by approximately 40% compared to non‐reconstructed specimens. All specimens failed at the femoral neck before failing at the distal femur. These findings suggest that plate augmentation of PMMA‐filled distal femoral defects like the one in this study offers insignificant biomechanical benefit within physiologic loads and therefore may be unnecessary.

Publisher

Wiley

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3