Light‐Driven Metabolic Pathways in Non‐Photosynthetic Biohybrid Bacteria

Author:

Bassett Shane1,Ding Yuchen1,Roy Micaela K.2,Reisz Julie A.2,D'Alessandro Angelo2,Nagpal Prashant34,Chatterjee Anushree134ORCID

Affiliation:

1. Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA

2. Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora Colorado 80045 USA

3. ARC Labs Louisville CO 80027 USA

4. Sachi Bio, Inc. Louisville CO 80027 USA

Abstract

AbstractBiomanufacturing via microorganisms relies on carbon substrates for molecular feedstocks and a source of energy to carry out enzymatic reactions. This creates metabolic bottlenecks and lowers the efficiency for substrate conversion. Nanoparticle biohybridization with proteins and whole cell surfaces can bypass the need for redox cofactor regeneration for improved secondary metabolite production in a non‐specific manner. Here we propose using nanobiohybrid organisms (Nanorgs), intracellular protein‐nanoparticle hybrids formed through the spontaneous coupling of core‐shell quantum dots (QDs) with histidine‐tagged enzymes in non‐photosynthetic bacteria, for light‐mediated control of bacterial metabolism. This proved to eliminate metabolic constrictions and replace glucose with light as the source of energy in Escherichia coli, with an increase in growth by 1.7‐fold in 75 % reduced nutrient media. Metabolomic tracking through carbon isotope labeling confirmed flux shunting through targeted pathways, with accumulation of metabolites downstream of respective targets. Finally, application of Nanorgs with the Ehrlich pathway improved isobutanol titers/yield by 3.9‐fold in 75 % less sugar from E. coli strains with no genetic alterations. These results demonstrate the promise of Nanorgs for metabolic engineering and low‐cost biomanufacturing.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3