Tunable electrospun scaffolds of polyacrylonitrile loaded with carbon nanotubes: from synthesis to biological applications

Author:

Fromager Bénédicte1ORCID,Cambedouzou Julien1,Marhuenda Emilie2,Iskratsch Thomas2,Pinault Mathieu3,Bakalara Norbert4,Cornu David1

Affiliation:

1. IEM, Univ Montpellier, CNRS, ENSCM cc047 Pl. E. Bataillon 34095 Montpellier France

2. School of Engineering and Materials Science Queen Mary University Of London 327 Mile End Rd, Bethnal Green London E1 4NS Royaume-Uni

3. Univ Paris Saclay, CEA, CNRS, NIMBE,LEDNA F-91191 Gif Sur Yvette France

4. CNRS, ENSTBB-Bordeaux INP, Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France

Abstract

AbstractGrowing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells. Electrospinning has gained in popularity due to its capacity to individually tune chemistry and mechanical properties and as such influence cell attachment, differentiation or maturation. Polyacrylonitrile (PAN) derived electrospun fibres scaffolds have shown exciting potential due to reports of mechanical tunability and biocompatibility. Building on previous work we fabricate here a range of PAN fibre scaffolds with different concentrations of carbon nanotubes. We characterize them in‐depth in respect to their structure, surface chemistry and mechanical properties, using scanning electron microscopy, image processing, ultramicrotomic transmission electron microscopy, x‐ray nanotomography, infrared spectroscopy, atomic force microscopy and nanoindentation. Together the data demonstrate this approach to enable finetuning the mechanical properties, while keeping the structure and chemistry unaltered and hence offering ideal properties for comparative studies of the cellular mechanobiology. Finally, we confirm the biocompatibility of the scaffolds using primary rat cardiomyocytes, vascular smooth muscle (A7r5) and myoblast (C2C12) cell lines.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3