DNA Logic Gates Integrated on DNA Substrates in Molecular Computing

Author:

Bardales Andrea C.1ORCID,Smirnov Viktor2,Taylor Katherine1,Kolpashchikov Dmitry M.1

Affiliation:

1. Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences Bld. Rm. 255 Orlando FL 32816–2366 Florida

2. Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute ITMO University 9 Lomonosova Str. St. Petersburg Russian Federation

Abstract

AbstractDue to nucleic acid's programmability, it is possible to realize DNA structures with computing functions, and thus a new generation of molecular computers is evolving to solve biological and medical problems. Pioneered by Milan Stojanovic, Boolean DNA logic gates created the foundation for the development of DNA computers. Similar to electronic computers, the field is evolving towards integrating DNA logic gates and circuits by positioning them on substrates to increase circuit density and minimize gate distance and undesired crosstalk. In this minireview, we summarize recent developments in the integration of DNA logic gates into circuits localized on DNA substrates. This approach of all‐DNA integrated circuits (DNA ICs) offers the advantages of biocompatibility, increased circuit response, increased circuit density, reduced unit concentration, facilitated circuit isolation, and facilitated cell uptake. DNA ICs can face similar challenges as their equivalent circuits operating in bulk solution (bulk circuits), and new physical challenges inherent in spatial localization. We discuss possible avenues to overcome these obstacles.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3