Affiliation:
1. School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu China
2. Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou China
3. Zhangjiang Laboratory Shanghai China
4. West China Hospital Sichuan University Chengdu China
Abstract
AbstractBackgroundThe generation of transcranial ultrasound is usually based on the piezoelectric effect, so it is necessary to attach transducers around the skull. However, the skull will cause serious attenuation and scattering of ultrasound, which makes it particularly difficult for transcranial ultrasound imaging and modulation.PurposeIn transcranial ultrasound imaging, there is significant attenuation and scattering of ultrasound waves by the skull bone. To mitigate this influence and enable precise imaging and high‐efficient transcranial ultrasound for specific patients (such as stroke patients who already require craniotomy as part of their surgical care), this paper proposes to use EMAT to excite metal plates placed inside the skull based on the excellent penetration characteristics of EM waves into the skull, generating ultrasound signals, which can completely avoid the influence of skull on ultrasound transmission.MethodsBased on an efficient wireless transcranial ultrasound experimental platform, we first verified that the skull would not affect the propagation of electromagnetic waves generated by EMAT. In addition, the distribution of the transcranial sound field generated by EMAT was measured.ResultsEMAT can generate 1.0 MHz ultrasound by wireless excitation of a 0.1 mm thick copper plate through an adult skull with a thickness of ∼1 cm, and the frequency and amplitude of the generated ultrasound are not affected by the skull. The results indicated that the electromagnetic waves successfully penetrated the skull, with a recorded strength of approximately 2 mV. We also found that the ultrasound signals generated by the EMAT probe through the skull remained unaffected, measuring around 2 mV. In addition, the measurement of the transcranial sound field distribution (80*50 mm2) generated by EMAT shows that compared with the traditional extracranial ultrasound generation method, the sound field distribution generated by the wireless excitation of the intracranial copper plate based on EAMT is no longer affected by the uneven and irregular skull.ConclusionOur experiments involved validating the penetration capabilities of electromagnetic waves utilizing the EMAT probe through a 7 (5+2) mm thick organic glass plate and a real human skull ranging from 8 to 15 mm in thickness. The efficient and wireless transcranial ultrasound excitation proposed in this paper may be possible for transcranial ultrasound imaging and therapy.
Funder
National Natural Science Foundation of China