Rare bird forecast: A combined approach using a long‐term dataset of an Arctic seabird and a numerical weather prediction model

Author:

Senzaki Masayuki1ORCID,Tamura Kenta1,Watanabe Yoshiaki2,Watanabe Megumi2,Sato Tomonori1

Affiliation:

1. Faculty of Environmental Earth Science Hokkaido University Sapporo Hokkaido Japan

2. East Hokkaido Bat Research Institute Ohzora Hokkaido Japan

Abstract

AbstractWildlife observation is a popular activity, and sightings of rare or difficult‐to‐find animals are often highly desired. However, predicting the sighting probabilities of these animals is a challenge for many observers, and it may only be possible by limited experts with intimate knowledge and skills. To tackle this difficulty, we developed user‐friendly forecast systems of the daily observation probabilities of a rare Arctic seabird (Ross's Gull Rhodostethia rosea) in a coastal area in northern Japan. Using a dataset gathered during 16 successive winters, we applied a machine learning technique of self‐organizing maps and explored how days with gull sightings were related to the meteorological pressure patterns over the Sea of Okhotsk (Method A). We also built a regression model that explains the relationship between gull sightings and local‐scale environmental factors (Method B). We then applied these methods with the operational global numerical weather prediction model (a computer simulation application about the fluid dynamics of Earth's atmosphere) to forecast the daily observation probabilities of our target. Method A demonstrated a strong dependence of gull sightings on the 16 representative weather patterns and forecasted stepwise observation probabilities ranging from 0% to 85.7%. Method B also showed that the strength of the northerly wind and the advancement of the season explained gull sightings and forecasted continuous observation probabilities ranging from 0% to 95.5%. Applying these two methods with the operational global numerical weather prediction model successfully forecasted the varied observation probabilities of Ross's Gull from 1 to 5 days ahead from November to February. A 2‐year follow‐up observation also validated both forecast systems to be effective for successful observation, especially when both systems forecasted higher observation probabilities. The developed forecast systems would therefore allow cost‐effective animal observation and may facilitate a better experience for a variety of wildlife observers.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3