Improved inference for a boundary parameter

Author:

Elkantassi Soumaya1,Bellio Ruggero2,Brazzale Alessandra R.3,Davison Anthony C.4ORCID

Affiliation:

1. Department of Operations University of Lausanne Lausanne Switzerland

2. Department of Economics and Statistics University of Udine Udine Italy

3. Department of Statistical Sciences University of Padova Padova Italy

4. Institute of Mathematics Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland

Abstract

AbstractThe limiting distributions of statistics used to test hypotheses about parameters on the boundary of their domains may provide very poor approximations to the finite‐sample behaviour of these statistics, even for very large samples. We review theoretical work on this problem, describe hard and soft boundaries and iceberg estimators, and give examples highlighting how the limiting results greatly underestimate the probability that the parameter lies on its boundary even in very large samples. We propose and evaluate some simple remedies for this difficulty based on normal approximation for the profile score function, and then outline how higher order approximations yield excellent results in a range of hard and soft boundary examples. We use the approach to develop an accurate test for the need for a spline component in a linear mixed model.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference50 articles.

1. Inference on full or partial parameters based on the standardized signed log likelihood ratio;Barndorff‐Nielsen O. E.;Biometrika,1986

2. Inference and Asymptotics

3. Applied Asymptotics

4. Brazzale A. R.&Mameli V.(2023).Likelihood asymptotics in nonregular settings: A review with emphasis on the likelihood ratio. arXiv preprint arXiv:2206.15178.

5. Saddlepoint approximation in exponential models with boundary points;Castillo J. D.;Bernoulli,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3