Land footprint and GHG emissions from global food loss

Author:

Abbade Eduardo Botti1ORCID

Affiliation:

1. Department of Administrative Sciences Federal University of Santa Maria Santa Maria Brazil

Abstract

AbstractBACKGROUNDEfficient land use represents a global challenge in the context of high levels of food loss (FL) and waste (FLW) and increasing greenhouse gas (GHG) emissions from global agricultural activities. This study aimed to estimate the land footprint (LF) associated with FL worldwide. It also estimated the GHG emissions from crop residues and their burning, and their relationship with food loss for the main crops worldwide. The study analyzed data from the Food and Agriculture Organization of the United Nations (FAO) regarding land use, FL, and global GHG emissions from crop residues.RESULTSThe findings suggest that the average LF associated with FL worldwide is about 69 million ha per year, and the main food items responsible for most of the LF associated with FL are maize, wheat, and rice. The annual average emissions derived from burning crop residues of FL are 48.8 kilotons year−1 of CH4 and 1.26 kilotons year−1 of N2O, and the emission of N2O derived from crop residues of FL is about 24.1 kilotons year−1, considering the three crops.CONCLUSIONFood loss implies high levels of LF and GHG emissions, reinforcing the need for proper public and private initiatives worldwide to reduce FL and waste (FLW). Organizations such as the FAO and the Organisation for Economic Co‐operation and Development (OECD) should incorporate indicators regarding FLW reduction to evaluate and monitor countries’ performance. An international agreement also needs to be addressed to engage the world's nations in the reduction of FLW levels. © 2023 Society of Chemical Industry.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

Reference92 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3