Optimized production and properties of biosurfactant from Bacillus invictaeUCP1617 and its performance in a detergent formulation for environmental applications

Author:

Barata Maria Inez C.1,Cavalcanti Matheus Henrique C.2,Rufino Raquel D.1,de Almeida Fabíola Carolina G.2,Sarubbo Leonie A.12ORCID

Affiliation:

1. UNICAP Icam Tech School Universidade Católica de Pernambuco (UNICAP) Recife Brazil

2. Department of Biotechnology Instituto Avançado de Tecnologia e Inovação (IATI) Recife Brazil

Abstract

AbstractThis work describes the production of a novel biosurfactant produced by the bacterium Bacillus invictae UCP1617 cultivated using an alternative substrate and its use in the formulation of an eco‐friendly detergent. A factorial design was used to optimize agitation, temperature, and inoculum size in a mineral medium containing 1.5% corn steep liquor in 100‐mL shake flasks. The best conditions (175 rpm, 28°C, and 4% inoculum) were used to scale up biosurfactant production in a 50‐L bioreactor. Surface tension of the fermentation medium decreased from 69.5 to 30.2 mN/m within 72 h. The biosurfactant exhibited a critical micelle concentration (CMC) of 0.900 ± 0.08 g/L. The biosurfactant formed stable oil‐in‐water emulsions of motor oil and petroleum, achieving emulsification indices of 90.80% and 99.00%, respectively. An eco‐friendly detergent was formed that included biosurfactant at several different concentrations, 0.2 (wt) % hydroxyethyl cellulose and 0.2% potassium sorbate. The detergent remained stable under extreme conditions of pH, temperature, and salinity when stored for 90 days. The detergent was nontoxic to cabbage, cherry tomato plants, and the microcrustacean Artemia salina. A detergent formulation containing biosurfactant at the CMC completely dispersed motor oil in seawater at a 1:1 surfactant/oil (vol/vol) ratio and removed 99.21% of motor oil (20 mL) contained in 60 g of clayey soil. The detergent removed 98.42% of the oil adhered to a glass surface and removed 75.00% of motor oil adsorbed to a porous surface. The application of this biosurfactant as an environmentally friendly additive for remediation processes is feasible.

Funder

Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3