Characterization and comparative evaluation of polysulfone and polypropylene hollow fiber membranes for blood oxygenators

Author:

Teber Oğuz Orhun12ORCID,Altinay Ayşegül Derya13,Naziri Mehrabani Seyed Ali12,Zeytuncu Bihter14,Ateş‐Genceli Esra3,Dulekgurgen Ebru3,Gölcez Tansu56,Yıldız Yahya7,Pekkan Kerem8,Koyuncu İsmail123

Affiliation:

1. National Research Center on Membrane Technologies Istanbul Technical University Istanbul Turkey

2. Nano Science and Nano Engineering Department Istanbul Technical University Istanbul Turkey

3. Environmental Engineering Department Istanbul Technical University Istanbul Turkey

4. Department of Metallurgical and Materials Engineering Istanbul Technical University Istanbul Turkey

5. Graduate School of Science and Engineering, Bio‐Medical Science and Engineering Department Koc University Istanbul Turkey

6. Institute of Biomedical Engineering Bogazici University Istanbul Turkey

7. Department of Anesthesiology and Reanimation Istanbul Medipol University School of Medicine Istanbul Turkey

8. Mechanical Engineering Department Koc University Istanbul Turkey

Abstract

AbstractBlood oxygenators are used to saturate oxygen levels and remove carbon dioxide from the body during cardiopulmonary bypass. Although the natural lung is hydrophilic, commercially used oxygenator materials are hydrophobic. Surface hydrophobicity weakens blood compatibility, as long‐term contact with the blood environment may lead to different degrees of blood activity. Polysulfone may be considered an alternative hydrophilic material in the design of oxygenators. Therefore, it may be directed toward developing hydrophilic membranes. This study aims to investigate the feasibility of achieving blood gas transfer with a polysulfone‐based microporous hollow fiber membrane and compare it with the commercially available polypropylene membranes. Structural differences in the membrane morphology, surface hydrophilicity, tortuosity, mass transfer rate, and material properties under different operation conditions of temperature and flow rates are reported. The polysulfone membrane has a water contact angle of 81.3°, whereas a commercial polypropylene membrane is 94.5°. The mass transfer resistances (s/m) for the polysulfone and polypropylene membranes are calculated to be 4.8 × 104 and 1.5 × 104 at 25°C, respectively. The module made of polysulfone was placed in the cardiopulmonary bypass circuit in parallel with the commercial oxygenator, and pH, pO2, pCO2 levels, and metabolic activity were measured in blood samples.

Funder

European Research Council

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3