Reinforcement Learning and PK‐PD Models Integration to Personalize the Adaptive Dosing Protocol of Erdafitinib in Patients with Metastatic Urothelial Carcinoma

Author:

De Carlo Alessandro1ORCID,Tosca Elena Maria1ORCID,Fantozzi Martina1,Magni Paolo1ORCID

Affiliation:

1. Electrical, Computer, and Biomedical Engineering University of Pavia Pavia Italy

Abstract

The integration of pharmacokinetic‐pharmacodynamic (PK‐PD) modeling and simulations with artificial intelligence/machine learning algorithms is one of the most attractive areas of the pharmacometric research. These hybrid techniques are currently under investigation to perform several tasks, among which precision dosing. In this scenario, this paper presents and evaluates a new framework embedding PK‐PD models into a reinforcement learning (RL) algorithm, Q‐learning (QL), to personalize pharmacological treatment. Each patient is represented with a set of PK‐PD parameters and has a personal QL agent which optimizes the individual treatment. In the training phase, leveraging PK‐PD simulations, the QL agent assesses different actions, defined consistently with the clinical knowledge to consider only plausible dose‐adjustments, in order to find the optimal rules. The proposed framework was evaluated to optimize the erdafitinib treatment in patients with metastatic urothelial carcinoma. This drug was approved by the US Food and Drug Administration (FDA) with a dose‐adaptive protocol based on monitoring the levels of serum phosphate, which represent a biomarker of both treatment efficacy and toxicity. To evaluate the flexibility of the methodology, a heterogeneous virtual population of 141 patients was generated using an erdafitinib population PK (PopPK)‐PD literature model. For each patient, treatment response was simulated by using both QL‐optimized protocol and the clinical one. QL agents outperform the approved dose‐adaptive rules, increasing more than 10% the efficacy and the safety of treatment at each end point. Results confirm the great potentialities of the integration of PopPK‐PD models and RL algorithms to optimize precision dosing tasks.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3