Investigation of structure and optical characteristics of irradiated PVP/CMC nanocomposite films based on ZnS/SnO2 nanofillers

Author:

Abdel‐Kader Mohamed H.12,Mohamed Abdel‐Aleam H.13,Almarashi Jamal Qernas M.1,Alhazime Ali A.1,Mohamed Mohamed Bakr12

Affiliation:

1. Physics Department College of Science, Taibah University Al Madina Al Munawarah Saudi Arabia

2. Physics Department, Faculty of Science Ain Shams University Cairo Egypt

3. Physics Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt

Abstract

AbstractPVP/CMC/50%ZnS‐50%SnO2 blends were formed by solid state reaction, sol‐gel methods and casting technique. The structure and the crystallite size of the nanofillers (ZnS and SnO2) were examined using x‐ray diffraction technique (XRD). The effect of laser irradiation energies compared to the proportions of loaded nanofillers on the films internal structure and morphology was studied using XRD. The high miscibility among blends has been confirmed through Fourier transform infrared spectroscopy (FTIR). The energy dispersive x‐ray spectroscopy (EDS) analysis proved the presence of the nanocomposite polymer blends constituent atoms. The blends surface morphology has been investigated through scanning electron microscope (SEM). The dual effect of both different laser energies and oxygen atoms content simultaneously, on the linear and nonlinear optical parameters of nanocomposite films were explored as well. Results showed that, the laser irradiation energy process has the highest enhancement on the optical properties. The optical band gap (Eg) values were reduced from 4.8 eV (in the case of unirradiated blend) to 3.5 eV (for blends irradiated with 150 mJ/cm2) for allowed direct transitions, but for allowed indirect transitions Eg decreased from 3.3 eV (for unirradiated) to 2.2 eV (for irradiated with 150 mJ/cm2).Highlights A comparative discussion upon the effect of excess oxygen atoms has been represented. A dominant effect for the laser exposure compared to both the particle size and excess oxygen atoms. The variations of the nanocomposite films structural and optical features were promising.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3