Influence of Temperature and Current Stressing on Cu‐Sn Intermetallic Compound Growth Characteristics of Lead‐Free Microbump

Author:

Fu Zhiwei12ORCID,Wei Qinru2,Guo Xiaotong2,Fu Xing2,Wang Jian12,Yang Chao12,Guo Huaixin3,Yang Jia‐Yue14

Affiliation:

1. School of Energy and Power Engineering Shandong University Jinan 250100 China

2. Science and Technology on Reliability Physics and Application of Electronic Component Laboratory China Electronic Product Reliability and Environmental Testing Research Institute Guangzhou 510610 China

3. Science and Technology on Monolithic Integrated Circuits and Modules Laboratory Nanjing Electronic Devices Institute Nanjing 210016 China

4. Optics & Thermal Radiation Research Center Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China

Abstract

AbstractA numerical analysis of the Cu flux on Cu/Sn/Cu is successfully used to establish kinetic models that are verified with reported data. Kinetic models are adopted to discuss the polarity effect of intermetallic compounds (IMCs) growth at different alloying stages. The models reveal that, before Sn solder is depleted during thermal aging, the net thermodiffusion Cu flux in Cu6Sn5 is over three times larger than that in Cu3Sn. While coupling with current stressing, the IMCs thickness increases from parabola‐like curves to a linear‐like relationship. The degree of influence decreases in the order of Cu6Sn5 on anode, Cu6Sn5 on cathode, Cu3Sn on anode, and Cu3Sn on cathode. Electromigration Cu flux in Sn is the critical factor that accelerates the anode's Cu6Sn5 growth, and its influence on the growth rate over 1000 times that on the anode's Cu3Sn. After Sn solder is depleted, Cu6Sn5 gradually converts into Cu3Sn, and its thickness is linearly decreases with square root of annealing time. When coupling with a current density of 1.0 × 105 A cm−2, the thickness ratio of Cu3Sn/Cu6Sn5 reduces from 1:2 to 1:6. Remarkably, irrespective of whether current exists or not, the depletion of Cu6Sn5 always takes much longer than that of Sn solder.

Funder

National Key Laboratory of Monolithic Integrated Circuits and Modules, Nanjing Electronic Devices Institute

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3