R‐Vine Copulas for Data‐Driven Quantification of Descriptor Relationships in Porous Materials

Author:

Neumann Matthias1ORCID,Gräfensteiner Phillip1ORCID,Machado Charry Eduardo23,Hirn Ulrich34ORCID,Hilger André5ORCID,Manke Ingo5ORCID,Schennach Robert23ORCID,Schmidt Volker1,Zojer Karin23ORCID

Affiliation:

1. Institute of Stochastics Ulm University Helmholtzstraße 18 89069 Ulm Germany

2. Institute of Solid State Physics, NAWI Graz Graz University of Technology Petersgasse 16/II Graz 8010 Austria

3. Christian Doppler Laboratory for Mass Transport through Paper Graz University of Technology Petersgasse 16/II Graz 8010 Austria

4. Institute of Bioproducts and Paper Technology Graz University of Technology Inffeldgasse 23 Graz 8010 Austria

5. Institute of Applied Materials Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany

Abstract

AbstractLocal variations in the 3D microstructure can control the macroscopic behavior of heterogeneous porous materials. For example, the permittivity through porous sheets or membranes is governed by local high‐volume pathways or bottlenecks. Due to local variations, unfeasibly large amounts of microstructure data may be needed to reliably predict such material properties directly from image data. Here it is demonstrated that a vine copula approach provides parametric models for local microstructure descriptors that compactly capture the 3D microstructure including its local variations and efficiently probe it with respect to selected, measurable properties. In contrast to common methods of complexity reduction, the proposed approach creates parametric models for the multivariate probability distribution of high‐dimensional descriptor vectors that inherently contain the complex, nonlinear dependencies between these descriptors. Therein, material properties are offered in physically motivated distributions of microstructure descriptors rather than as normally distributed data. Applied to porous fiber networks (paper) before and after unidirectional compression, it is shown that the copula‐based models reveal material‐characteristic relationships between two or more microstructure descriptors. In this way, the presented modeling approach can provide deeper insight into the microscopic origin of effective macroscopic properties of heterogeneous porous materials.

Funder

Christian Doppler Forschungsgesellschaft

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3