A Processing and Analytics System for Microscopy Data Workflows: The Pycroscopy Ecosystem of Packages

Author:

Vasudevan Rama Krishnan1ORCID,Valleti Sai Mani2,Ziatdinov Maxim13,Duscher Gerd4ORCID,Somnath Suhas5

Affiliation:

1. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA

2. Bredesen Center for Interdisciplinary Research The University of Tennessee Knoxville Knoxville TN 37966 USA

3. Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

4. Department of Materials Science and Engineering The University of Tennessee Knoxville Knoxville TN USA

5. National Center for Computational Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA

Abstract

AbstractMajor advancements in fields as diverse as biology and quantum computing have relied on a multitude of microscopy techniques. Despite the considerable proliferation of these instruments, significant bottlenecks remain in terms of processing, analysis, storage, and retrieval of the acquired datasets. Aside from lack of file standards, individual domain‐specific analysis packages are often disjoint from the underlying datasets, and thus keeping track of analysis and processing steps remains tedious for the end‐user, hampering reproducibility. Here, the pycroscopy ecosystem of packages is introduced, an open‐source python‐based ecosystem underpinned by a common data model. The data model, termed the N‐dimensional spectral imaging data format, is realized in pycroscopy's sidpy package. This package is built on top of dask arrays, thus leveraging dask array attributes, but expanding them to accelerate microscopy relevant analysis and visualization. Several examples of the use of the pycroscopy ecosystem to create workflows for data ingestion and analysis of scanning transmission electron microscopy (STEM) and scanning probe microscopy data are shown. Adoption of such standardized routines will be critical to usher in the next generation of autonomous instruments where processing, computation, and meta‐data storage will be critical to overall experimental operations.

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3