Performance optimization of acrylonitrile butadiene styrene/thermoplastic polyurethane composite foams blown with carbon dioxide using Taguchi technique

Author:

Khaleghi Sara1,Azdast Taher1ORCID,Doniavi Ali2,Hasanzadeh Rezgar1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering Urmia University Urmia Iran

2. Department of Industrial Engineering, Faculty of Engineering Urmia University Urmia Iran

Abstract

AbstractIn this study, acrylonitrile butadiene styrene (ABS)/thermoplastic polyurethane (TPU) composite foam blown with CO2 was fabricated. Optimization was done by design of experiment (DOE) on the cellular structure using the Taguchi method. Foaming time (20, 40, and 80 s), saturation pressure (4, 5.5, and 7 MPa), and foaming temperature (80, 90, and 120°C) are the input parameters. The results obtained from the signal‐to‐noise (S/N) analysis showed that the most effective factor on the cell density (CD) was the saturation pressure and its influence rate was 48.05%, and also, the CD improved with the increase in the saturation pressure because the high saturation pressure leads to an enhancement in gas solubility and the rate of cell nucleation. Moreover, the foaming temperature and the foaming time had a noteworthy impact on the void fraction and the cell size (CS), and they should be controlled accurately. The impression rate of the foaming time on the CS was 50.86%, and also, with increase in the temperature and the time of foaming, the void fraction showed an increasing trend. The optimal values for the CD, the CS, and the void fraction were predicted to be 1.18 × 109 cells/cm3, 5.37 μm, and 0.5744%, respectively.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3