Augmenting Basis Sets by Normalizing Flows

Author:

Saleh Yahya12,Iske Armin1,Yachmenev Andrey23,Küpper Jochen234

Affiliation:

1. Department of Mathematics Universität Hamburg Bundesstraße 55 20146 Hamburg Germany

2. Center for Free-Electron Laser Science CFEL Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany

3. Center for Ultrafast Imaging Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

4. Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Abstract

AbstractApproximating functions by a linear span of truncated basis sets is a standard procedure for the numerical solution of differential and integral equations. Commonly used concepts of approximation methods are well‐posed and convergent, by provable approximation orders. On the down side, however, these methods often suffer from the curse of dimensionality, which limits their approximation behavior, especially in situations of highly oscillatory target functions. Nonlinear approximation methods, such as neural networks, were shown to be very efficient in approximating high‐dimensional functions. We investigate nonlinear approximation methods that are constructed by composing standard basis sets with normalizing flows. Such models yield richer approximation spaces while maintaining the density properties of the initial basis set, as we show. Simulations to approximate eigenfunctions of a perturbed quantum harmonic oscillator indicate convergence with respect to the size of the basis set.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3