Dynamic Phase‐Field Fracture in Viscoelastic Materials using a First‐Order Formulation

Author:

Friebertshäuser Kai1,Thomas Marita23,Tornquist Sven3,Weinberg Kerstin1,Wieners Christian4

Affiliation:

1. University of Siegen Germany

2. Weierstrass Institute for Applied Analysis and Stochastics Berlin Germany

3. FU Berlin Germany

4. Karlsruhe Institute of Technology Germany

Abstract

AbstractIn this contribution we present analytical results on a model for dynamic fracture in viscoelastic materials at small strains that have been obtained in full depth in [1]. In the model, the sharp crack interface is regularized with a phase‐field approximation, and for the phase‐field variable a viscous evolution with a quadratic dissipation potential is employed. A non‐smooth penalization prevents material healing. The viscoelastic momentum balance is formulated as a first order system and coupled in a nonlinear way to the non‐smooth evolution equation of the phase field. We give a full discretization in time and space using a discontinuous Galerkin method for the first‐order system. We discuss the existence of discrete solutions and, with the step size in space and time tending to zero, their convergence to a suitable notion of weak solution of the system. Eventually, we provide a numerical benchmark and compare it with simulation results found in [2].

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference18 articles.

1. M. Thomas S. Tornquist K. Weinberg and C. Wieners Approximating dynamic phase-field fracture in viscoelastic materials with a first-order formulation for velocity and stress 2022 http://www.wias-berlin.de/projects/SPP2256-19/thomas2022approximating.pdf.

2. K. Friebertshäuser M. Thomas S. Tornquist C. Wieners and K. Weinberg submitted to PAMM (2022).

3. B. Bourdin G. Francfort and J. J. Marigo Journal of elasticity 91(1-3) 5–148 (2008).

4. C. J. Larsen C. Ortner and E. Süli Mathematical Models and Methods in Applied Sciences 20(07) 1021–1048 (2010).

5. R. Rossi and M. Thomas Math. Models Methods Appl. Sci. 27(08) 1489–1546 (2017).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3