Self‐Certifying Classification by Linearized Deep Assignment

Author:

Boll Bastian1,Zeilmann Alexander1,Petra Stefania2,Schnörr Christoph1

Affiliation:

1. Image and Pattern Analysis Group Heidelberg University Heidelberg

2. Mathematical Imaging Group Heidelberg University Heidelberg

Abstract

AbstractWe propose a novel class of deep stochastic predictors for classifying metric data on graphs within the PAC‐Bayes risk certification paradigm. Classifiers are realized as linearly parametrized deep assignment flows with random initial conditions. Building on the recent PAC‐Bayes literature and data‐dependent priors, this approach enables (i) to use risk bounds as training objectives for learning posterior distributions on the hypothesis space and (ii) to compute tight out‐of‐sample risk certificates of randomized classifiers more efficiently than related work. Comparison with empirical test set errors illustrates the performance and practicality of this self‐certifying classification method.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference26 articles.

1. O. Catoni PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning IMS Lecture Notes Monograph Series Vol. 56 (Institute of Mathematical Statistics 2007).

2. B. Guedj A primer on PAC-Bayesian learning in: Proceedings of the second congress of the French Mathematical Society French Mathematical Society Vol. 33 (French Mathematical Society 2019).

3. G. K. Dziugaite and D. M. Roy Data-dependent PAC-Bayes priors via Differential Privacy in: Advances in Neural Information Processing Systems NIPS Vol. 31 (Curran Associates Inc. 2018).

4. M. Pérez-Ortiz O. Rivasplata J. Shawe-Taylor and C. Szepesvári Tighter Risk Certificates for Neural Networks Journal of Machine Learning Research 22(227) 1–40 (2021).

5. J. Langford and M. Seeger Bounds for Averaging Classifiers Technical Report CMU-CS-01-102 (2001).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3