The accuracy and reliability of different midsagittal planes in the symmetry assessment using cone‐beam computed tomography

Author:

Yu Shaoyang12ORCID,Zheng Yao12,Dong Lirong12,Huang Wenli12,Wu Haoting12,Zhang Qiang12,Yan Xiao12,Wu Wei12,Lv Tao3,Yuan Xiao12

Affiliation:

1. Department of Orthodontics The Affiliated Hospital of Qingdao University Qingdao China

2. School of Stomatology Qingdao University Qingdao China

3. Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases Jinan China

Abstract

AbstractSymmetry is an essential component of esthetic assessment. Accurate assessment of facial symmetry is critical to the treatment plan of orthognathic surgery and orthodontic treatment. However, there is no internationally accepted midsagittal plane (MSP) for orthodontists and orthognathic surgeons. The purpose of this study was to explore a clinically friendly MSP, which is more accurate and reliable than what is commonly used in symmetry assessment. Forty patients with symmetric craniofacial structures were analyzed on cone‐beam computed tomography (CBCT) scans. The CBCT data were exported to the Simplant Pro software to build four reference planes that were constructed by nasion (N), basion (Ba), sella (S), odontoid (Dent), or incisive foramen (IF). A total of 31 landmarks were located to determine which reference plane is the most optimal MSP by comparing the asymmetry index (AI). The mean value of AI showed a significant difference (p < 0.05) among four reference planes. Also, the mean value of AI for all landmarks showed that Plane 2 (consisting of N, Ba, and IF) and Plane 4 (consisting of N, IF, and Dent) were more accurate and stable. In conclusion, the MSP consisting of N, Dent, and IF shows more accuracy and reliability than the other planes. Further, it is more clinically friendly because of its significant advantage in landmarking.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3