Lie hypergraph and chaos‐based privacy preserving protocol for wireless sensor networks in IoT environment

Author:

Sridharan Supriya1,Rajendran Sujarani2,Venkatraman Swaminathan1ORCID

Affiliation:

1. Department of Mathematics, School of Arts, Sciences, Humanities and Education SASTRA Deemed University Thanjavur India

2. Department of Computer Science, Srinivasa Ramanujan Centre SASTRA Deemed University Kumbakonam India

Abstract

SummaryWireless sensor networks (WSN) are innately resource restrained and beneficial in a wide range of applications, including smart homes, e‐health care, law, military systems, disaster management, and emergency reprieve. These applications are linked to various devices that may communicate with one another through the internet, typically known as Internet of Things (IoT). The application of WSN plays an integral role in the IoT infrastructure. In a WSN, sensors are haphazardly placed in environments where the data transmission is challenged by privacy concerns. This paper proposes a methodology termed Lie hypergraph and chaos‐based secure routing (LH‐CSR) to perform an energy‐efficient routing with secure data transmission in WSN. In the first phase, the deployed sensor nodes are transformed into a hypergraph from which cluster head (CH) is elected by hypergraph transversal property, and for secure routing, the route is formed by the Lie commutators of the Lie algebra of upper triangular matrices. The second phase emphasizes privacy preservation by introducing the novel chaotic map formulation to process the key generation. The encryption and decryption processes are maintained by key generation to prevent data loss during retrieval. In this way, the data are retained confidentially with minimal computational overhead. The performance of the LH‐CSR is evaluated through a simulation, which shows that it outperforms over compared protocols in terms of cryptographic time, network lifetime, packet delivery ratio, end‐to‐end delay, and throughput.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3