Twist-1 Enhances Bone Marrow Mesenchymal Stromal Cell Support of Hematopoiesis by Modulating CXCL12 Expression

Author:

Arthur Agnieszka123,Cakouros Dimitrios12,Cooper Lachlan1,Nguyen Thao12,Isenmann Sandra12,Zannettino Andrew C.W.24,Glackin Carlotta A.5,Gronthos Stan12

Affiliation:

1. Mesenchymal Stem Cell Laboratory, University of Adelaide, Adelaide, South Australia, Australia

2. South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia

3. Department of Haematology, SA Pathology, Adelaide, South Australia, Australia

4. Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia

5. Division of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA

Abstract

Abstract Twist-1 encodes a basic helix-loop-helix transcription factor, known to contribute to mesodermal and skeletal tissue development. We have reported previously that Twist-1 maintains multipotent human bone marrow-derived mesenchymal stem/stromal cells (BMSC) in an immature state, enhances their life-span, and influences cell fate determination. In this study, human BMSC engineered to express high levels of Twist-1 were found to express elevated levels of the chemokine, CXCL12. Analysis of the CXCL12 proximal promoter using chromatin immunoprecipitation analysis identified several E-box DNA sites bound by Twist-1. Functional studies using a luciferase reporter construct showed that Twist-1 increased CXCL12 promoter activity in a dose dependent manner. Notably, Twist-1 over-expressing BMSC exhibited an enhanced capacity to maintain human CD34 + hematopoietic stem cells (HSC) in long-term culture-initiating cell (LTC-IC) assays. Moreover, the observed increase in HSC maintenance by Twist-1 over-expressing BMSC was blocked in the presence of the CXCL12 inhibitor, AMD3100. Supportive studies, using Twist-1 deficient heterozygous mice demonstrated a significant decrease in the frequency of stromal progenitors and increased numbers of osteoblasts within the bone. These observations correlated to a decreased incidence in the number of clonogenic stromal progenitors (colony forming unit–fibroblasts) and lower levels of CXCL12 in Twist-1 mutant mice. Furthermore, Twist-1 deficient murine stromal feeder layers, exhibited a significant decrease in CXCL12 levels and lower numbers of hematopoietic colonies in LTC-IC assays, compared with wild type controls. These findings demonstrate that Twist-1, which maintains BMSC at an immature state, endows them with an increased capacity for supporting hematopoiesis via direct activation of CXCL12 gene expression.

Funder

NH&MRC

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3