Loss parameter identification of a welded ring core lamination of NO‐electrical steel

Author:

Ukwungwu David1ORCID,Hameyer Kay1

Affiliation:

1. Institute of Electrical Machines (IEM) RWTH Aachen University Aachen Germany

Abstract

AbstractLamination packaging processes such as welding lead to a significant material degradation of non‐oriented (NO) electrical steel sheets. Increase in iron loss and decrease in permeability are the results of the deterioration. For an efficient modeling of a drive train, the accurate parameterization of the iron loss is of upmost importance. For this reason, the iron loss model is expanded to include the influences of welding procedure. Its influence can be classified into changes in the grain size diameter and residual stresses . In this study, a locally varying iron loss model for the simulation of effects of weld‐packaging on the electromagnetic properties of non‐oriented (NO) electrical steel sheets is presented. Packaging technologies such as interlocking, welding, clinching and gluing are typically utilized for the manufacturing of electric steel stacks of electric machines. Understanding the micro‐structural changes due to the macro‐structural degradation accruing to weld‐packaging helps in the accurate understanding of its influence on the performance and achievable range of the electric vehicle. Five (5) electric steel probes are annealed for the modeling of the local varying iron loss model at five different temperatures and electromagnetically measured to determine its magnetization and loss values. This will help in determining the grain size dependency of the different loss parameters. The annealed probes are measured under mechanical stresses showing also the residual stress dependency.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3