Cold blood in warming waters: Effects of air temperature, precipitation, and groundwater on Gulf Sturgeon thermal habitats in a changing climate

Author:

Carlson Andrew K.1ORCID,Gaffey Bethany M.2

Affiliation:

1. U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, School of Forest, Fisheries, and Geomatics Sciences and Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA

2. Florida Cooperative Fish and Wildlife Research Unit, School of Forest, Fisheries, and Geomatics Sciences and Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA

Abstract

AbstractObjectiveIn a changing climate, the effects of air temperature, precipitation, and groundwater on water temperature and thermal habitat suitability for Gulf Sturgeon Acipenser desotoi, listed as threatened under the U.S. Endangered Species Act, are not well understood. Hence, we incorporated these factors into thermal habitat models to forecast how Gulf Sturgeon may be affected by wide‐ranging climate change scenarios in 2024–2074.MethodsUsing data from the Choctawhatchee River, Florida, we developed precipitation‐ and groundwater‐corrected air–water temperature models, compared their accuracy with that of conventional air–water temperature models used in fisheries management, and projected future Gulf Sturgeon thermal habitat suitability for normal physiological functioning and fieldwork (i.e., population sampling and telemetry surgeries) in summer (May–August) under 16 climate change scenarios.ResultPrecipitation‐ and groundwater‐corrected models were more accurate than conventional air–water temperature models (mean improvement in adjusted R2 = +0.45; range = +0.09 to +0.75). Water temperature was projected to warm at widely variable rates across climate change scenarios encompassing different air temperature, precipitation, and groundwater regimes. Importantly, Gulf Sturgeon summer aggregation areas were cooler and influenced more by precipitation and groundwater and less by air temperature than were non‐aggregation areas. If precipitation and groundwater—as drivers of cooling—become warm in a changing climate, summer aggregation areas were projected to exhibit thermal habitat degradation equivalent to or greater than that of non‐aggregation areas.ConclusionOur results add hydrological context to the premise that aggregation areas provide cool water and energetic savings for Gulf Sturgeon during summer, underscoring the importance of protecting these habitats through groundwater conservation, water quality monitoring, and riparian/watershed habitat management. Our findings indicate that identifying thermally appropriate times for fieldwork activities will be increasingly important and time‐restricted as climate change intensifies. However, our research provides managers with a portfolio of water temperature models and an accurate, cost‐effective, management‐relevant approach to forecasting thermal habitat conditions for Gulf Sturgeon and other species in a changing climate.

Publisher

Wiley

Reference49 articles.

1. Barrios K. &Chelette A.(2008).Holmes Creek spring inventory: Washington County FL(Water Resources Special Report 2008‐01). Northwest Florida Water Management District.

2. Alternatives for the protection and restoration of sturgeons and their habitat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3