Improving the migration resistance against phthalate plasticizer in polyvinyl chloride/graphene oxide composites

Author:

Chen XingBao1ORCID,Wu Xudong1,Zhao Shiwei1,Lei Yuan1,Zhou Shiyi2,Lei Jingxin1,Jiang Liang1

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China

2. College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China

Abstract

AbstractPhthalic plasticizer plays an important role in processing and manufacturing one of the universal polymer materials, poly (vinyl chloride) (PVC), which has been widely applied in every aspect of our lives. However, there still exists the intrinsic problem in migration resistance of phthalic plasticizer in long‐term use. In this work, we take a facile and convenient approach by incorporating commercial graphene oxide (GO) into PVC matrix to prepare polyvinyl chloride/graphene oxide (PVC/GO) composites, forming a sheet structure for improving the migration resistance of phthalic plasticizer. The advantages of GO that has abundant oxygen‐containing groups on its surface, including carboxyl groups at the sheet edges, epoxy groups, and hydroxyl groups on its basal planes. Especially, these oxygen‐containing groups in GO are beneficial to blend with long molecular chain of PVC and the sheet structure of GO can prevent phthalic plasticizer migrating from interior PVC. Addition of GO not only effectively enhanced the mechanical properties of PVC/GO composites but also improve their migration resistance due to the sheet structure. This strategy provides an attractive way to solve the problem of migration of plasticizer with simple incorporation GO into the matrix of PVC, reinforcing the composite properties and broadening its applied fields.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3