Self‐Assembled HYP Liposome Nanoparticles Promote Diabetic Wound Healing by Regulating the Polarization of M1 Macrophages

Author:

Hou Bao1,Zhang Shijie1,Wen Yuanyuan1,Xu Anjing1,Zhu Xuexue1,Cai Weiwei1,Zhou Yuetao1,Qiu Liying1ORCID,Sun Haijian123

Affiliation:

1. Department of Basic Medicine, Wuxi Medical School Jiangnan University Wuxi Jiangsu 214122 P. R. China

2. State Key Laboratory of Natural Medicines China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 P. R. China

3. Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore 117600 Singapore

Abstract

AbstractSuppression of the polarization of M1 macrophages is crucial for promoting diabetic wound healing. Hypahorine (HYP), a small molecule alkaloid compound with anti‐inflammatory properties, is encapsulated in liposome nanospheres (HYP‐INPS) using a one‐step ultrasound method and applied to treat open wounds in diabetic rats. Transmission electron microscopy (TEM) revealed that HYP‐INPS nanoparticles are spherical and coated with a lipid layer. ZetaPALS analysis demonstrated that HYP‐INPS has a potential of ‐15.67 ± 2.58 mV and a size of 212.87 ± 13.34 nm. In vitro, confocal microscopy revealed the cellular uptake of HYP‐INPS in macrophages. Flow cytometry showed that HYP‐INPS inhibited the polarization of bone marrow‐derived macrophages (BMDMs) to the M1 phenotype. In vivo, HYP‐INPS promoted diabetic wound healing by improving the inflammatory microenvironment within wounds. Immunofluorescence revealed that HYP‐INPS up‐regulated the expression of M2 macrophages and down‐regulated the expression of M1 macrophages at the wound site. Transcriptome sequencing showed that HYP‐INPS treatment specifically up‐regulated ASB10 expression in LPS‐induced RAW264.7 cells. Loss‐of‐function or gain‐of‐function experiments confirmed the regulatory role of ASB10 in M1 macrophage polarization. Therefore, HYP‐INPS targeted ASB10 is concluded to accelerate wound healing in diabetes by inhibiting the polarization of M1 macrophages and improving the inflammatory microenvironment. This newly developed HYP‐INPS system holds promise as a potential treatment for diabetic wounds.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3