Inhalational Delivery of β‐glucan‐chitosan‐poly(lactic co‐glycolic) acid Nanoparticles Enhance Alveolar Macrophage Rifampin Concentrations for the Treatment of Tuberculosis

Author:

Kutscher Hilliard L.123,Tamblin Maria3,Karki Shanta3,Chaves Lee3,Baird Marissa3,Parvin Afrin3,Smith Evon3,Dube Admire4,Zhang Zhaoqi5,Chakraborty Saptarshi5,Kenney Patrick6,Reynolds Jessica L.3ORCID

Affiliation:

1. Institute for Lasers Photonics and Biophotonics The State University of New York at Buffalo Buffalo NY 14260 USA

2. Department of Anesthesiology The State University of New York at Buffalo Buffalo NY 14203 USA

3. Division of Allergy Immunology and Rheumatology Department of Medicine Clinical Translational Research Center The State University of New York at Buffalo Buffalo NY 14203 USA

4. Pharmaceutics at the School of Pharmacy University of the Western Cape (UWC) Robert Sobukwe Road Bellville 7535 South Africa

5. Department of Biostatistics The State University of New York at Buffalo Buffalo NY 14203 USA

6. Adult and Pediatric Infectious Disease The State University of New York at Buffalo Buffalo NY 14203 USA

Abstract

AbstractDespite multiple treatments for tuberculosis (TB), there are ≈10 million new cases and 1.5 million deaths annually, warranting the need for new therapeutics. Major clinical treatment issues include the length of treatment which is associated with patient non‐compliance; and poor cellular drug penetration leading to the generation of drug‐resistant strains. This study underscores the potential of β‐glucan‐chitosan (CS) poly(lactic co‐glycolic) acid (PLGA) nanoparticles as a promising immunostimulatory adjunct for TB treatment. To facilitate drug delivery to alveolar macrophage, a CS‐PLGA nanoparticle is developed containing rifampin in the core with β‐glucan as a surface ligand, to stimulate the immune system. Mice are administered a single dose of nanoparticles or free rifampin by oropharyngeal aspiration. Pharmacokinetic investigations reveal sustained release properties of rifampin in vivo, extending over a week. Furthermore, comprehensive analysis indicates stimulation of the innate immune system, as evidenced by cytokine profiling, while concurrently revealing no detrimental effects on the alveolar epithelium, as indicated by histological examination and albumin lung leak assessment. These findings collectively establish a strong foundation for the development of a novel adjuvant immunotherapy approach for TB.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3