Unraveling the Heterointegration of 3D Semiconductors on Graphene by Anchor Point Nucleation

Author:

Diallo Thierno Mamoudou12ORCID,Hanuš Tadeáš12ORCID,Patriarche Gilles3ORCID,Ruediger Andreas4ORCID,Boucherif Abderraouf12ORCID

Affiliation:

1. Institut Interdisciplinaire d'Innovation Technologique (3IT) Université de Sherbrooke 3000 Boulevard de l'Université Sherbrooke QC J1K 0A5 Canada

2. Laboratoire Nanotechnologies Nanosystèmes (LN2)–CNRS IRL‐3463 Institut Interdisciplinaire d'Innovation Technologique (3IT) Université de Sherbrooke 3000 Boulevard Université Sherbrooke Québec J1K0A5 Canada

3. Centre de Nanosciences et de Nanotechnologies (C2N) CNRS Université Paris‐Saclay Palaiseau 91120 France

4. Nanoelectronics‐Nanophotonics INRS‐EMT 1650, Boulevard Lionel‐Boulet Varennes QC J3×1P7 Canada

Abstract

AbstractThe heterointegration of graphene with semiconductor materials and the development of graphene‐based hybrid functional devices are heavily bound to the control of surface energy. Although remote epitaxy offers one of the most appealing techniques for implementing 3D/2D heterostructures, it is only suitable for polar materials and is hugely dependent on the graphene interface quality. Here, the growth of defect‐free single‐crystalline germanium (Ge) layers on a graphene‐coated Ge substrate is demonstrated by introducing a new approach named anchor point nucleation (APN). This powerful approach based on graphene surface engineering enables the growth of semiconductors on any type of substrate covered by graphene. Through plasma treatment, defects such as dangling bonds and nanoholes, which act as preferential nucleation sites, are introduced in the graphene layer. These experimental data unravel the nature of those defects, their role in nucleation, and the mechanisms governing this technique. Additionally, high‐resolution transmission microscopy combined with geometrical phase analysis established that the as‐grown layers are perfectly single‐crystalline, stress‐free, and oriented by the substrate underneath the engineered graphene layer. These findings provide new insights into graphene engineering by plasma and open up a universal pathway for the heterointegration of high‐quality 3D semiconductors on graphene for disruptive hybrid devices.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec

Fonds de recherche du Québec – Nature et technologies

Mitacs

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3