Switchable Polar Nanotexture in Nanolaminates HfO2‐ZrO2 for Ultrafast Logic‐in‐Memory Operations

Author:

Kumar Mohit12,Han Seung‐Ik1,Ahn Yeonghwan1,Jeon Yerin1,Park Jiyeong1,Seo Hyungtak12ORCID

Affiliation:

1. Department of Energy Systems Research Ajou University Suwon 16499 Republic of Korea

2. Department of Materials Science and Engineering Ajou University Suwon 16499 Republic of Korea

Abstract

AbstractNontrivial topological polar textures in ferroelectric materials, including vortices, skyrmions, and others, have the potential to develop ultrafast, high‐density, reliable multilevel memory storage and conceptually innovative processing units, even beyond the limit of binary storage of 180° aligned polar materials. However, the realization of switchable polar textures at room temperature in ferroelectric materials integrated directly into silicon using a straightforward large area fabrication technique and effectively utilizing it to design multilevel programable memory and processing units has not yet been demonstrated. Here, utilizing vector piezoresponse force and conductive atomic force microscopy, microscopic evidence of the electric field switchable polar nanotexture is provided at room temperature in HfO2‐ZrO2 nanolaminates grown directly onto silicon using an atomic layer deposition technique. Additionally, a two‐terminal Au/nanolaminates/Si ferroelectric tunnel junction is designed, which shows ultrafast (≈83 ns) nonvolatile multilevel current switching with high on/off ratio (>106), long‐term durability (>4000 s), and giant tunnel electroresistance (108%). Furthermore, 14 Boolean logic operations are tested utilizing a single device as a proof‐of‐concept for reconfigurable logic‐in‐memory processing. The results offer a potential approach to “processing with polar textures” and addressing the challenges of developing high‐performance multilevel in‐memory processing technology by virtue of its fundamentally distinct mechanism of operation.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3