Regulating the Critical Intermediates of Dual‐Atom Catalysts for CO2 Electroreduction

Author:

Zhang Mengyang1,Zhou Dingyang1,Mu Xueqin1,Wang Dingsheng2,Liu Suli1ORCID,Dai Zhihui1

Affiliation:

1. School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 China

2. Department of Chemistry Tsinghua University Beijing 100084 China

Abstract

AbstractElectrocatalysis is a very attractive way to achieve a sustainable carbon cycle by converting CO2 into organic fuels and feedstocks. Therefore, it is crucial to design advanced electrocatalysts by understanding the reaction mechanism of electrochemical CO2 reduction reaction (eCO2RR) with multiple electron transfers. Among electrocatalysts, dual‐atom catalysts (DACs) are promising candidates due to their distinct electronic structures and extremely high atomic utilization efficiency. Herein, the eCO2RR mechanism and the identification of intermediates using advanced characterization techniques, with a particular focus on regulating the critical intermediates are systematically summarized. Further, the insightful understanding of the functionality of DACs originates from the variable metrics of electronic structures including orbital structure, charge distribution, and electron spin state, which influences the active sites and critical intermediates in eCO2RR processes. Based on the intrinsic relationship between variable metrics and critical intermediates, the optimized strategies of DACs are summarized containing the participation of synergistic atoms, engineering of the atomic coordination environment, regulation of the diversity of central metal atoms, and modulation of metal‐support interaction. Finally, the challenges and future opportunities of atomically dispersed catalysts for eCO2RR processes are discussed.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3