Affiliation:
1. Department of Physics and Astronomy Seoul National University Seoul 08826 Republic of Korea
2. Inter‐university Semiconductor Research Centre Seoul National University Seoul 08826 Republic of Korea
3. Department of Electronic Engineering Hanyang University Seoul 04763 Republic of Korea
4. Institute of Applied Physics Seoul National University Seoul 08826 Republic of Korea
5. Department of Biomedical Engineering Hanyang University Seoul 04763 Republic of Korea
Abstract
AbstractNanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron‐beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high‐energy electron beams (e‐beams) for high‐resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL‐based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High‐resolution EBL nanopatterning is achievable, even at low‐energy e‐beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material‐containing silk allows for fluorescence amplification. Furthermore, this post‐exposure cross‐linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial‐based nanodevices for biomedical applications can be envisioned.
Funder
National Research Foundation of Korea