Structure and Interface Engineering of Ultrahigh‐Rate 3D Bismuth Anodes for Sodium‐Ion Batteries

Author:

Zhang Xiaoshan1,Qiu Xueqing1ORCID,Lin Jinxin1,Lin Zehua1,Sun Shirong12,Yin Jian3,Alshareef Husam N.3,Zhang Wenli124ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology (GDUT) 100 Waihuan Xi Road, Panyu District Guangzhou 510006 China

2. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang 515200 China

3. Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

4. School of Advanced Manufacturing Guangdong University of Technology (GDUT) Jieyang 522000 China

Abstract

AbstractSodium‐ion batteries (SIBs) have attracted tremendous attention as promising low‐cost energy storage devices in future grid‐scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g−1). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin‐derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether‐based electrolytes enable robust and stable SEI films. These two merits enable the long‐term cycling process of the LC‐Bi anode. The LC‐Bi composite delivers outstanding sodium‐ion storage performance with an ultra‐long cycle life of 10 000 cycles at a high current density of 5 A g−1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g−1. Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3