Grafted Alkene Chains: Triggers for Defeating Contact Thermal Resistance in Composite Elastomers

Author:

Yang Min12ORCID,Pang Yunsong1ORCID,Li Junhong1,Zhou Wei1,Ren Linlin1,Sun Rong1,Zeng Xiaoliang1ORCID

Affiliation:

1. National Key Laboratory of Materials for Integrated Circuits Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China

Abstract

AbstractThe pursuit of enhancing the heat transfer performance of composite elastomers as the thermal interface materials (TIMs) is a compelling and timely endeavor, given the formidable challenges posed by interfacial thermal transport in the domains of energy science, electronic technology, etc. Despite the efficacy of phase change materials (PCMs) in enhancing composite elastomers’ interfacial compatibility, thereby reducing contact thermal resistance for heat transfer improvement, their leakage post‐transition has impeded the widespread adoption of this approach. Herein, a strategy is proposed for developing a solid‐solid phase change composite elastomer by grafting alkene chains onto the crosslink network to eliminate the possibility of leakage. A series characterization suggest that the resulting material possesses a self‐adjusting interfacial compatibility feature to help reduce contact thermal resistance for heat transfer facilitating. The investigations on adhesion strength and surface energy reveal that the presence of amorphous grafted alkane chains at the interface facilitates easier absorption onto the contacting solid surface, enhancing intermolecular interactions at the interface to promote across‐boundary heat transfer. By integrating these findings with the thermal performance evaluation of composite elastomers using a real test vehicle, valuable insights are gained for the design of composite elastomers, establishing their suitability as TIMs in relevant fields.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3