Hydrophobic Mn‐Doped Solid‐State Red‐Emitting Carbon Nanodots with AIE Effect and Their Hydrogel Composites for Color‐Changing Anticounterfeiting

Author:

Gong Xiao12,Xu Qingqing2,Li Jiurong2,Ma Yan1,Li Xiaoyan1,Wu Wanze2,Wang Hangxiang13

Affiliation:

1. The First Affiliated Hospital NHC Key Laboratory of Combined Multi‐Organ Transplantation Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases State Key Laboratory for Diagnosis and Treatment of Infectious Diseases Zhejiang University School of Medicine Hangzhou 310003 P. R. China

2. State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan 430070 P. R. China

3. Jinan Microecological Biomedicine Shandong Laboratory Jinan 250117 P. R. China

Abstract

AbstractThe aggregation‐caused quenching has always limited the high concentration and solid‐state applications of carbon nanodots. While the aggregation‐induced emission effect, dominated by intramolecular motion, may be an effective means to solve this problem. Here, hydrophobic solid‐state red‐light carbon nanodots (M‐CDs) with 95% yield are synthesized by a one‐step hydrothermal method using 2,2'‐dithiodibenzoic acid as the carbon source and manganese acetate as the dopant source. The disulfide bond of 2,2'‐dithiodibenzoic acid serves as the symmetry center of molecular rotation and Mn catalyzes the synthesis of M‐CDs, which promotes the formation of the central graphitic carbon structure. The M‐CDs/agar hydrogel composites can achieve fluorescence transition behavior because of the special fluorescence transition properties of M‐CDs. When this composite hydrogel is placed in water, water molecules contact with M‐CDs through the network structure of the hydrogels, making the aggregated hydrogels of M‐CDs fluorescence orange‐red under 365 nm excitation. While in dimethyl sulfoxide, water molecules in the hydrogels network are replaced and the M‐CDs fluoresce blue when dispersed, providing a potential application in information encryption. In addition, high‐performance monochromatic light‐emitting diode (LED) devices are prepared by compounding M‐CDs with epoxy resin and coating them on 365 nm LED chips.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3