Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self‐Densification

Author:

Chen Feng123ORCID,Ritter Maximilian34,Xu Yifan12,Tu Kunkun345,Koch Sophie Marie34,Yan Wenqing3,Bian Huiyang6,Ding Yong34,Sun Jianguo34,Burgert Ingo34

Affiliation:

1. Hubei Provincial Engineering Research Center of Surface and Interface Regulation Technology and Equipment for Renewable Energy Materials Jianghan University Wuhan 430056 China

2. Key Laboratory of Optoelectronic Chemical Materials and Devices‐Ministry of Education Jianghan University Wuhan 430056 China

3. Wood Materials Science Group Institute for Building Materials ETH Zürich Zürich 8093 Switzerland

4. WoodTec Group Cellulose & Wood Materials Empa Dübendorf 8600 Switzerland

5. Jiangsu Key Laboratory of Coal‐based Greenhouse Gas Control and Utilization China University of Mining and Technology Xuzhou Jiangsu 221008 China

6. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing Jiangsu 210037 China

Abstract

AbstractWood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot‐pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid‐water mixture enables the densification of tube‐line wood cells into layer‐by‐layer sheet structures without hot‐pressing. The natural capillary force induces self‐densification in a simple drying process resulting in a transparent wood film. The as‐prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g−1 and 31 GPa cm3 g−1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

Funder

National Basic Research Program of China

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3